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Abstract
Accurate vegetation cover maps of forested areas are crucial for ecosystems monitoring, as well as for management of

water balance, flood and fire risk, and other forest-associated resources. With this regard, remote sensing techniques have

been used for land cover mapping worldwide. Here, we propose a vegetation-mapping methodology in a dehesa envi-

ronment using ultra-high spatial resolution imagery (UHSR) with a spatial resolution of 0.25 m and four bands in the

visible and near-infrared spectrum. Land cover categories were defined by their runoff generation capability and considered

two levels of disaggregation: among species (macro-class level) and within species (class level). Additionally, we

developed a method to reduce field campaigns and manual work by transferring random forest classifiers trained with a

group of images (training group) to neighboring images (validation group). The training group was remarkably accurate,

achieving an overall accuracy of 91.6% (k = 0.89) at the class level and 95.8% (k = 0.94) at the macro-class level. The

results for the validation group were also very high, with an overall accuracy of 78.3% (k = 0.74) at the class level and

86.3% (k = 0.82) at the macro-class level. Moreover, we found that the blue band, soil color index, and texture features

have a great influence on species discrimination, especially within shrub species in dehesa environments. Notably, having

accurate land cover maps is crucial, given that the use of a global database led to underestimating the potential runoff in the

most representative land cover in the dehesa environment. Future research will focus on the automatic generation of new

samples extracted from the classified UHSR images, which could be used as training datasets for the supervised classi-

fication of other high spatial resolution images (e.g., Sentinel imagery) for regional-scale hydrological models.

Keywords Jeffries–Matusita distance � National Plan of Aerial Orthophotography (PNOA) � Run off � Shrub �
Training-data � Tree grass ecosystem

1 Introduction

Accurate vegetation maps of forested areas are widely

known to be crucial for forest management. Notably,

vegetation cover has a great influence on biodiversity and

ecosystem monitoring (Fang et al. 2018), water balance

models (Becker et al. 2019; Dias et al. 2015; Dionizio and

Costa 2019; Lima de Almeida et al. 2019), hydrological

modeling and flood management (Chen et al. 2019a;

Chymyrov et al. 2018; Dou et al. 2018; Fragoso-Campón

et al. 2019; Melesse and Shih 2002; Niu and Sivakumar

2014; Van der Sande et al. 2003), soil erosion (Eroğlu et al.

2010), fuel type (Garcı́a et al. 2011; Lasaponara and

Lanorte 2007a; Riaño et al. 2007), and associated forest

resources and biomass inventories (Castillo et al. 2017;

Fassnacht et al. 2017; Garcia et al. 2017; Hawryło and
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Wę _zyk 2018; Li et al. 2017; Nizami et al. 2017; Rodriguez-

Veiga et al. 2017).

Remote sensing techniques have been used to map land

cover and land use worldwide. Many studies have

addressed land cover from a general standpoint (Ahmed

et al. 2015; Akike and Samanta 2016; Bolton et al. 2018;

Qi et al. 2014; Zhao et al. 2016; Zhou et al. 2014) and

others have focused on the study of a specific vegetation

stratum. In the later studies, vegetation is typically divided

into two strata: the overstory and the understory strata. The

overstory is the highest vegetation level, which corre-

sponds to the tree canopies. Many studies have focused on

this stratum, particularly by characterizing forest structure,

tree cover density, or tree species (Dalponte et al.

2012, 2014; Ferreira et al. 2016; Ghosh et al. 2014; Kim

et al. 2011). The understory is the lowest level and includes

shrubs and pasture. However, although this stratum plays a

key role in forest ecosystems (Tuanmu et al. 2010), there

are far fewer studies focusing on the understory than those

addressing the overstory. Nonetheless, some works such as

those by Magiera et al. (2016), Stavrakoudis et al. (2014),

and van Lier et al. (2009) have focused on the mapping of

understory habitats from remote sensing data. Additionally,

several studies have focused on the detection of invasive

shrubs (Malahlela et al. 2015; Müllerová et al. 2013;

Niphadkar et al. 2017) and others have analyzed the rela-

tionship between low strata and the overstory, as well as

the influence of shrubs on the reflectance of higher-level

canopies (Eriksson et al. 2006; Landry et al. 2018; Tuanmu

et al. 2010).

As shown in Fassnacht et al. (2016), the different remote

sensing techniques used in vegetation cover analyses uti-

lize either passive (multispectral or hyperspectral images)

or active (SAR and LiDAR data) optical data, or a com-

bination of both. However, our study focused on passive

optical data-based analyses, which require the spectral and

spatial resolutions1 to be considered in order to render

accurate maps. In the case of passive remote sensing,

whether its main sources are satellites or aerial platforms,

the spectral resolution decreases when the spatial resolu-

tion increases (Dalponte et al. 2009). The spectral resolu-

tion in these types of sensors ranges from the visible (VIS),

near-infrared (NIR), and shortwave-infrared (SWIR) of the

electromagnetic spectrum. On the other hand, the spatial

resolution ranges from coarse with a pixel size of more

than 250 m (CSR), medium with a pixel size of 30 m

(MSR), high with a pixel size of 10 m (HSR), very-high

with a pixel size ranging from 1 m to 5 m (VHRS), and

ultra-high with a pixel size of 1 m or less (UHSR).

Therefore, multispectral sensors can be classified into

three groups depending on pixel size. The first group

consists of MSR- or HSR-resolution approaches such as of

Landsat-8, SPOT, and Sentinel-2 satellite imagery. The

second group is comprised of high-resolution technologies

such as GeoEye, Pleiades, IKONO, QuickBird, RapidEye,

and WorldView, all of which achieve a VHSR resolution.

See Table 1 for more details.

UHSR-resolution approaches typically involve aerial

imagery with a spatial resolution of\ 1 m, ranging from

0.25 to 0.50 m, such as those implemented by the National

Plan of Aerial Orthophotography (PNOA) in Spain. The

PNOA imagery provides a continuous coverage throughout

the Spanish territory, with a spectral resolution of 4 bands

including the VIS and NIR with an update period of 2 or

3 years, depending on the area.

The selection of a particular remote sensing sensor

depends on the aim of the study. For instance, Landsat

imagery is commonly used to map land cover from a

general standpoint and when a long time series is needed,

given that this technology possesses the longest time series

capacity available (Ahmed et al. 2015; Bolton et al. 2018;

Zhao et al. 2016; Zhou et al. 2014). In recent years, Sen-

tinel-2 imagery has been proven as a viable alternative to

Landsat, and many studies have adopted said technology

for land cover mapping in forested areas (Fragoso-Campón

et al. 2019; Godinho et al. 2017; Immitzer et al. 2016;

Mura et al. 2018; Nomura and Mitchard 2018).

Additionally, spatial resolution plays a key role in

heterogeneous landscapes due to the confusion between

discrete and continuous cover types (Adam et al. 2014). In

this regard, as mentioned by Ferreira et al. (2016), the

differences in the spectral variability within species are

significantly lower than the spectral variability among

species. The potential of VHSR imagery has been

demonstrated in vegetation species mapping in several

ecosystems. For instance, heterogeneous coastal landscapes

have been assessed with RapidEye (Adam et al. 2014), tree

species discrimination with GeoEye, Pleiades, and

WorldView2 (Fang et al. 2018), other applications with

IKONOS (Kim et al. 2011), tree species crown mapping in

African savannas with QuickBird (Boggs 2010), or a

combination between VHSR and hyperspectral or LiDAR

in the Southern Alps (Dalponte et al. 2012), Boreal forests

(Dalponte et al. 2014), and tropical seasonal semi-decidu-

ous forests (Ferreira et al. 2016). Regarding the study of the

understory vegetation with VHSR, RapidEye was used to

analyze the reflectance signatures of shrub species in the

Caucasus (Magiera et al. 2016), whereas QuickBird and an

EO-1 Hyperion (Stavrakoudis et al. 2014) or IKONOS

were used in the study of ericaceous shrubs (van Lier et al.

2009). Fewer studies have employed UHSR imagery for

vegetation mapping. One example is a study by Müllerová

et al. (2013), which focused on the detection of an invasive

species in the Czech Republic using RapidEye technology1 Please note that temporal resolution was not analyzed in this work.
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and a historical UHSR series. One more example, is the

study by Wang et al. (2019) which used UHSR images to

classify woody and herbaceous vegetation in a dryland

ecosystem in China. Another study estimated tree crown

delineation and tree cover from UHSR imagery obtained

from the PNOA (Borlaf-Mena et al. 2019; Cantero Fau-

quier et al. 2017). Moreover, some studies (e.g., Riaño

et al. (2007)) have used UHSR images to study the fuel-

type map of a predominantly shrub-land area in central

Portugal in conjunction with LiDAR data. Table 2 sum-

marizes the main characteristics of these previous studies.

As previously mentioned, although these techniques

have been proven to be effective in mapping vegetation

species throughout various ecosystems, only a few studies

have focused on dehesa landscapes. The dehesa is a

Mediterranean agro-silvo-pastoral system that covers more

than 3 million hectares in the Iberian Peninsula (Caballero

Dı́az et al. 2015; Diaz et al. 1997). There are many ways to

define the dehesa. From an economic standpoint, Olea and

San Miguel-Ayanz (2006) described it as ‘‘an agrosil-

vopastoral system developed on poor or non-agricultural

land and aimed at extensive livestock raising.’’ Diaz et al.

(1997) proposed another definition based on a landscape

standpoint: ‘‘Dehesas are pasturelands populated by holm

(Quercus ilex) and/or cork (Quercus suber) oaks, with an

understory of open grassland, cereal crops, or Mediter-

ranean scrub.’’ As described by Olea et al. (2005), the

dehesa is located in the southern region of the Iberian

Peninsula, both in Spain and Portugal, where it is locally

referred to as ‘‘montado’’, mainly in Extremadura (Spain),

Alentejo (Portugal), and Andalucı́a (Spain), with extensions

of approximately 12 500, 8000, and 7000 km2, respec-

tively. The dehesa not only plays a key role in the rural

economy, as they are a source of cork, acorns, natural

pastures, aromatic and medicinal plants, honey, and

mushrooms (Canteiro et al. 2011), but also in preserving

the ecosystem biodiversity, as they are the main feeding

areas of a large number of endangered bird species, and

also host a large number of wintering birds from northern

Europe (Diaz et al. 1997).

In the dehesa environment, the spatial distribution of the

vegetation cover plays a crucial role in the productivity of

pastures and tree growth, and therefore many studies have

focused on the relationship between them. However,

characterizing the positive or negative relationship between

understory and overstory species remains a challenge

because different studies often reach conflicting conclu-

sions. For example, Rivest et al. (2011) analyzed the effect

of shrub encroachment on pasture yield, holm oak (Quer-

cus ilex) growth, and acorn production, and concluded that

encroachment affected pasture and tree production in

Mediterranean dehesas in a species- and climate-dependent

manner. Other authors have analyzed how shrubs benefit

tree recruitment. In this sense, Pulido et al. (2010) con-

cluded that shrubs protect acorns and provide shadow,

thereby allowing for better seedling establishment. An

alternative point of view is the relationship between soil

organic matter (i.e., a universal soil quality and land

degradation indicator) and vegetation cover, studied by

Pulido-Fernández et al. (2013). This study demonstrated

that soil organic carbon stocks were closely related to the

tree density and shrub cover, although further analysis is

Table 1 Main characteristics of multispectral sensors

Group1 Satellite2 Spatial Resolution Number of Bands Spectral bands3 Spectral range Available4

MSR Landsat-8 30 m 9 VIS–NIR-SWIR 15 nm to 180 nm –

HSR SPOT 10 m 5 VIS–NIR 70 nm to 170 nm. –

Sentinel-2 10 m 12 VIS–NIR-SWIR 15 nm to 180 nm –

VHSR GeoEye 2 m (PA 0.5 m) 5 PA-VIS–NIR 35 nm to 140 nm €

IKONO 4 m (PA 1 m) 5 PA-VIS–NIR 66 nm to 96 nm €

QuickBird 2.5-2.9 m (PA 0.6-0.9 m) 5 PA-VIS–NIR 60 nm to 140 nm €

RapidEye 6.5 m 5 VIS-RE-NIR 55 nm to 90 nm €

WorldView 2 m (PA 0.5 m) 8 VIS-RE-NIR1-NIR2 40 nm to 180 nm €

1MSR medium spatial resolution, HSR high spatial resolution, VHSR very-high spatial resolution
2Satellite Data from Labrador Garcı́a et al. (2012)
3PA panchromatic

VIS red-blue-green

RE red edge

NIR near-infrared

SWIR shortwave-infrared
4(–) available for free; (€) available under request and fee payment
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required. In another study, Santos-Silva et al. (2011)

demonstrated that the tree canopy cover factor in montados

was highly related with the macrofungal richness and

sporocarp production, which highlighted the need for new

management strategies to preserve montados with a canopy

cover of 30–50%. Godinho et al. (2016b) investigated the

influence of the environment, land management, and spa-

tial factors on recent montado changes in Portugal, their

results indicated that most of the variance in the large-scale

distribution of recent montado loss was due to land man-

agement practices associated with grazing intensity and

type, as well as shrub control techniques. Lastly, Godinho

et al. (2016a) found that there was a significant statistical

relationship between tree canopy cover factors in montado

ecosystems and land surface albedo and temperature, and

discussed how these two biogeophysical parameters are

related with climate change, specifically in increasingly

arid ecosystems. In this sense, the water balance is also

related to the vegetation cover and affects several factors

such as evapotranspiration, runoff, interflow, and infiltra-

tion (Becker et al. 2019; Dias et al. 2015; Dionizio and

Costa 2019). Current approaches in hydrological calibra-

tion are based on spatially distributed models that require

remote sensing data as input (Athira et al. 2016; Becker

et al. 2019; Chen et al. 2019b). Therefore, it is necessary to

know the spatial distribution of several parameters such as

topography, soil and land cover characteristics, and mete-

orological details. Thus, knowing the spatial distribution of

vegetation cover is essential to assess complex hydrologi-

cal models, given that the vegetation cover factor reduces

runoff and enhances infiltration, thereby increasing

groundwater recharge (Netzer et al. 2019).

Despite the importance of having maps that accurately

characterize the vegetation of the dehesas ecosystem for

hydrological modeling, water balance models, and man-

agement strategies of the regions in question, only a few

studies have examined the dehesa vegetation using remote

sensing techniques. Among these studies, we found a few

that used MSR images such as Landsat (Carreiras et al.

2006; Godinho et al. 2016a) and HSR images of Sentinel

imagery (Fragoso-Campón et al. 2019; Godinho et al.

2017). Moreover, hardly any researchers have used VHSR

or UHSR in dehesas ecosystems, most of which have

focused on the overstory stratum. For instance, Castillejo-

González et al. (2010) applied QuickBird VHR images to

obtain the tree canopy cover factor in a dehesa environ-

ment. Moreover, Cantero Fauquier et al. (2017) and Borlaf-

Mena et al. (2019) mapped the tree crown shape of a de-

hesa environment using a segmentation approach with

PNOA UHSR images, covering only three spectral bands

(RBG) coupled with LiDAR data. Similarly, Lavado

Contador et al. (2012) analyzed the temporal dynamics of

the tree canopy cover factor in a dehesa ecosystem using

PNOA UHSR images, also only covering three spectral

bands (RBG). From a water balance standpoint, few studies

have focused on the hydrological processes of dehesa

environments. These studies include some of the earliest

reports (Ceballos and Schnabel 1998; Cerda et al. 1998;

Joffre and Rambal 1993), as well as more recent studies

focused on soil water balance based on MODIS NDVI

products (Campos et al. 2013, 2016). However, further

research is needed to characterize hydrological processes in

dehesa environments via spatially distributed models,

where access to accurate vegetation spatial patterns is

mandatory. Hence, this study attempted to go further by

applying the current remote sensing techniques to render

high accurate ad hoc land cover maps. Notably, the cate-

gories should be related to the potential runoff generation

capability. Thus, it is applicable to hydrological modeling

and, the precision is improved if compared to other global

land cover database.

Therefore, our study sought to develop a methodology to

characterize vegetation in a dehesa environment using

PNOA UHSR imagery for future use in hydrological

modeling. The specific goals of this study were: (1) to

obtain customized high-resolution maps of the vegetation

in both the overstory and understory strata; (2) to develop a

method to reduce field campaigns by transferring the

information of the training dataset to different images for

which ground data extraction was not necessarily per-

formed; (3) to identify vegetation types based on ecosys-

tem management approaches and runoff generation

capability; (4) to evaluate the influence of the spatial res-

olution of land cover maps on potential runoff estimation in

a dehesa environment.

2 Materials

2.1 Study area

The study area corresponds to a dehesa environment in the

Extremadura region in Spain. The area limits correspond

with the two neighboring watersheds of the Tamuja and

Aljucén rivers, which are approximately 458 and 253 km2

respectively, and extends between latitudes 39� 000–39� 300

N and longitudes of 6� 210–5� 540 W (Fig. 1). Based on the

Worldwide Bioclimatic Classification System (Rivas-

Martinez and Rivas-Saenz 1996–2019), the area corre-

sponds to the Mediterranean West Iberian biogeographic

region (15a: Luso-Extremaduran), the Mediterranean plu-

viseasonal continental variant, and the mesomediterranean

thermoclimatic belt. The overstory vegetation is mainly

comprised of holm oaks (Quercus rotundifolia), although

sparse areas of cork oaks (Quercus suber) and pyrenean

oaks (Quercus pyrenaica) can also be found. The
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understory is more diverse and several evergreen shrub

species are distributed in the study area. The main species

in the dehesas ecosystem are Cistus ladanifer, Retama

sphaerocarpa, Lavandula stoechas, Thymus mastichina,

Genista hirsute, Phillyrea angustifolia, Erica arborea, and

Erica australis (Devesa Alcaraz 1995). The herbaceous

vegetation is predominantly acidophilus pasture, which is

characteristically ephemeral and with low coverage and

spring phenology, followed lastly by dry agricultural areas

(i.e., small grain, meadow, or forage lands for grazing).

Finally, other non-vegetation land covers such as rocky

outcrops, small cattle ponds, and impervious surfaces (e.g.,

roads or roofs of rural houses) are also present in the study

area, albeit with a much lower occurrence.

2.2 Imagery dataset

The UHSR imagery used in this study was obtained from

the PNOA (Ministerio de Fomento 2019). As previously

mentioned, the PNOA imagery has the great advantage of

providing continuous coverage throughout the Spanish

territory. The images analyzed in this study were taken

with a 4-band multispectral sensor (visible and NIR) at a

0.25-m spatial resolution in June of 2016. The images are

typically used as a cartographic background in numerous

fields, including civil and forestry engineering, and as a

basis for the photointerpretation of different surface ele-

ments (primarily in the combination of RGB bands) and to

update the Spanish Land Occupation Information System

(SIOSE) (Vila-Garcı́a et al. 2015). Hernández-López et al.

(2013) discussed the importance of the spectral information

provided by PNOA images for applications related to the

extraction of physical parameters, the evolution of forest

cover, and agronomic analysis of plant species. However,

few studies have taken advantage of the spectral informa-

tion of the bands beyond their use as a cartographic

background. Otherwise, only the visible spectrum (RGB) is

typically used (Borlaf-Mena et al. 2019; Lavado Contador

et al. 2012). This is probably due to the fact that RGB

information can be downloaded for free from the National

Geographic Institute’s Download Center (IGN), whereas

the NIR data is only available upon request.

In the study area, a total of twenty-five images were

selected for the analysis, which represent the entire vari-

ability of the dehesa environment (Fig. 3). The pre-pro-

cessing of the PNOA images is described in the metadata

of the imagery and includes the following steps: mosaic

making, radiometric correction, enhancement, and cutting

of images with coating. The images are supplied in a

1:5000 tile and two products are available in parallel: one

was made in the visible spectrum (RGB) and another in

false infrared color (NIR-R-G), in this case, the metadata

Fig. 1 Study area
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indicated that the infrared layer was not radiometrically

corrected.

2.3 Field data

The field data in the Tamuja and Aljucén watersheds were

randomly selected by visual interpretation of the UHSR

images representing the wide range of cover types in the

dehesa. As reported by Ferreira et al. (2016), only areas

that were clearly distinguished by visual interpretation

were drawn, thus ensuring the spectral responses of all the

species considered in the analysis. Moreover, a field cam-

paign was designed for the identification of ambiguous

cases as proposed in Mas et al. (2010). As a result, the field

dataset covered approximately 1.8 million pixels (Fig. 2).

Thus, the land cover classes in the dehesa environment

were grouped into two levels of disaggregation, as shown

in Table 3. On the one hand, the class-level, in which

different classes within the species were defined, focused

on the discrimination of understory strata. On the other

hand, the different species in the dehesa environment were

grouped in the macro-class level. This classification also

fits a similar hydrologic response following the criteria of

the National Engineering Handbook (NRCS 2009), and

thus the different classes and macro-classes considered

herein can be grouped according to their runoff generation

capacity (Table 3).

2.4 Image pre-processing and predictors

A multiband raster stack was created for each image to

account for the four spectral bands (i.e., NIR, red, green,

and blue) in the analysis. Similar to previous studies (see

Table 2), additional features (i.e., in addition to the spectral

information) were used as predictors to improve the dis-

crimination of the vegetation. These predictors included

vegetation indices (VI), soil indices (SI), and textural fea-

tures (TF). The PNOA imagery had an 8-bit color depth,

and thus the pixel values ranged from 0 to 255. Therefore,

similar to the method proposed by Borlaf-Mena et al.

(2019), the digital numbers were first normalized from 0 to

1 using Eq. (1).

NIRn ¼ NIR

255
; Redn ¼ Red

255
; Greenn ¼ Green

255
;

Bluen ¼ Blue

255

ð1Þ

where NIR, Red, Green, and Blue are the digital values of

the pixel in each band, and NIRn, Redn, Greenn, and Bluen

are the normalized values of the pixels.

The VI, SI, and TF analysis was conducted using the

Sentinel Application Platform (SNAP) software developed

by the European Space Agency (ESA). The well-known

normalized difference vegetation index (NDVI) is by far

the most widely used index among the VI; however, other

indices have also been proven to be useful (Fang et al.

2018; Ferreira et al. 2016). Due to the low spectral reso-

lution of the PNOA imagery, only a limited number of

indices can be computed with the available bands. Table 4

summarizes the indices considered in this study.

Regarding the use of SI, the most common indices are

the Brightness Index (BI) and the Color Index (CI) (Es-

cadafal 1993), and although they are not fully implemented

in vegetation classifications (Fragoso-Campón et al. 2019),

they have been proven to be useful as they can improve the

discrimination between low green vegetation canopy cov-

ers and bare soil (Huete and Post 1984; Richardson and

Wiegand 1977).

Regarding the TF, the grey-level co-occurrence matrices

(GLCM) (Haralick and Shanmugam 1973) is a widely used

method to compute textures metrics. As reported by Bur-

nett et al. (2019), the texture metrics can be computed from

a combination of bands or the principal component, but it is

also possible to achieve good results using only a single

band. In this case, we used only the NIR band to compute

the derived textured measures due to the spatial resolution

of the images and to the specific importance of this band in

the vegetation response. As recommended by Hall-Beyer

(2017), the descriptive statistics (mean and variance) of the

GLCM texture measurements were applied. Specifically,

means were utilized for classification and the variance was

included as additional information, as these parameters

were not expected to be highly correlated (Hall-Beyer

2017). The analysis was performed for all angles via

Fig. 2 Field dataset pixels grouped according to both levels of disaggregation considered a class level; b macro-class level
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probabilistic quantization, using a pixel displacement of 4

and a 7 9 7 window size.

2.5 Training and Validation Groups

Two different groups of PNOA images of the study area

were considered in the analysis: the training group and the

validation group (Fig. 3). The training group was used to

train the model, whereas the validation group was used to

perform an independent accuracy verification to evaluate

the capability of the classifier to be used in neighboring

images that were not used to train the model. The statistical

analyses were performed with the R statistical computing

software (R-Core-Team 2018).

First, a seventeen-image training group was used to

obtain a training dataset. For each image, a different region

Table 3 Land cover types analyzed
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of interest (ROI) dataset was randomly geolocalized, rep-

resenting all the land cover types in each tile. Then, the

values of the predictors in each category were obtained

using the raster R package (Hijmans 2019). Afterward, all

the ROI datasets were merged into one, representing all the

ROI of the training group. At this point, the training dataset

was randomly divided into two groups ensuring to maintain

the class balance: ROI Dataset 1 and ROI Dataset 2

(complete data sets in Rdata format are provided in Online

Resource 1). The separability of the classes and macro-

classes was tested based on the spectral response, VI, SI,

and TF using the Jeffries-Matusita distance (JMD) for

Table 4 Vegetation, water, and soil indices considered in this study

Type Index Equation* Reference

Vegetation NDVI NDVI ¼ NIRn�Redn

NIR nþRedn
(2) Rouse Jr et al. (1974)

SAVI**

SAVI ¼ 1 þ Lð Þ � NIR n�Redn

NIR nþRed nþLð Þ (3) Huete (1988)

MSAVI2
MSAVI2 ¼ 1

2
� ð2 � NIR n þ 1ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NIRn þ 1ð Þ2�8 NIRn � Rednð Þ
q

� �

(4)
Qi et al. (1994)

Water NDWI NDWI ¼ Green n�NIRn

Green nþNIRn
(5) Gao (1996)

Soil BI
BI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Red2
nþGreen2

n

2

q

(6)
Mathieu et al. (1998)

CI CI ¼ Red n�Greenn

Red nþGreenn
(7) Escadafal and Huete (1991)

*Adaptation of the traditional formulation to the normalized values of the bands
**L = 0.50

NDVI (Normalized Difference Vegetation Index); SAVI (Soil Adjusted Vegetation Index); MSAVI2 (Second Modified Soil Adjusted Vegetation

Index), NDWI (Normalized Difference Water Index); BI (Brightness Index); CI (Color Index)

Fig. 3 Images of the PNOA tile used for training and validation
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multiclass cases via the varSel R package (Dalponte and

Ørka 2016). The JMD measures the separability among

categories based on the information that each predictor can

provide to the analysis. As shown in Lasaponara and

Lanorte (2007b), the JMD bounds are between 0 and 1.41

(asymptotic to the value 2), whereby higher values indicate

Fig. 4 UHSR imagery processing flowchart proposed in this study
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higher separability. JMD values below a threshold value of

1 are generally assumed to represent poor separability.

Therefore, the separability of the proposed categories was

verified using a JMD threshold of 1.

Secondly, an eight-image validation group was used to

obtain the validation dataset. Following the procedure

explained above, ROIs of each image were randomly

geolocalized to represent the land cover in each tile.

2.6 Classification technique

When the input predictors for the classification are

obtained from a mixed origin (spectra, indices, and tex-

tures), non-parametric machine learning methods such as

the random forest (RF) (Breiman 2001) and the support

vector machine classifier (SVM) have been proven effec-

tive in previous studies (Fassnacht et al. 2016). As shown

in Table 2, both algorithms have been widely used in

previous studies and are well documented (Ghosh et al.

2014).

In this study, a pixel-level supervised classification was

conducted using RF, as this approach is more time-effi-

cient. Thus, the classifications were performed using the

RandomForest R package (Liaw and Wiener 2002). The

RF classifier was trained considering two scenarios as

shown in Fig. 4. Both training datasets, ROI Dataset 1 and

ROI Dataset 2, were use twice (i.e., as training data or as

independent test data each time). Finally, the RF classifier

with the best performance in terms of overall accuracy was

selected for the classification. The analysis was conducted

for both the class and macro-class levels.

Two parameters had to be configured to train the RF

classifier: the number of decision trees (Ntree), which was

set to 500, and the number of variables to be selected and

tested to achieve an optimal split when growing the trees

(Mtry). In each scenario, the best Mtry values were trained

before the classifier was defined.

2.7 Post-classification processing

When applying a pixel-level classification approach to an

image with high spatial resolution, it is assumed that salt-

and-pepper noise will occur. There are some techniques to

reduce this noise in the final classification (Kim et al. 2011)

and one of them is related to a classification post-process

that improves the accuracy of the final maps (Stavrakoudis

et al. 2014; Su 2016). In this work, the classified images

were smoothed using the majority filtering and sieving

methods (Mas et al. 2010). The filtering process was car-

ried out with algorithms implemented in the QGIS soft-

ware. First, the SAGA majority filter (Conrad 2010) was

applied, considering a square search mode with a radius of

2. Afterward, the GDAL sieve filter (GDAL-documentation

2019), which removes groups of raster pixels smaller than a

provided threshold size (in pixels), was set to a threshold

value of 10 to replace the pixels with the pixel value of the

largest neighboring pixels values.

2.8 Accuracy assessment

The accuracy measures used herein were based on error

matrix information, which allows to obtain derived metrics

to evaluate the performance of the RF (Congalton and

Green 2008). The error matrices were performed with the

caret R package (Kuhn et al. 2018). First, we considered an

overall accuracy (OA) parameter, which represents the

global ratio of correct predictions considering all the cat-

egories on the map. Additionally, the error matrix provides

other information to test each category. Therefore, the

metrics used for the accuracy assessment by categories

(considering the class or macro-class level) were defined

Table 5 Accuracy measures in each category based on error matrix information

Metric Definition Equation

Sensitivity Proportion of predictions that are accurately classified as positive in each category. Also

called producer’s accuracy
Sensitivity ¼ TP

TPþFN (8)

Specificity Proportion of predictions that are accurately classified as negative Specificity ¼ TN
TNþFP (9)

Precision Proportion of the reference area included accurately in each category to which it

belongs. Also called user’s accuracy
Precision ¼ TP

TPþFP (10)

Balanced

accuracy

The average proportion of predictions accurately classified, considering both the TP and

TN possibilities
BA ¼ 1

2
� sensivity þ specificityð Þ (11)

TP True Positive

FN False Negative

FP False Positive

TN True Negative
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based on the procedures described by Franklin (2010), as

summarized in Table 5.

As shown in Fig. 4, the accuracy evaluations were car-

ried out in two phases. First, the best RF classifier in the

training group was analyzed by comparing the OA in the

two considered scenarios. Then, once the RF classifier with

the best performance was selected, the accuracy metrics in

each category were obtained for both class and macro-class

analyses. Afterward, the capability of the RF classifier to

be used in other validation group images that were not used

to train the model was evaluated. Therefore, a zonal his-

togram of the ROI over the post-processed classified

Table 6 NRCS runoff curve number (CN)

UHSR imagery Corine land cover

Class-level

categories

NRCS land cover Hydrologic

condition

CN1 CLC-

18

Description CN2

Qc Woods Good 55 111 Continuous urban fabric 98

Smix Range-Brush Fair 56 131 Mineral extraction sites 85

Sret Range-Brush Poor 67 211 Non-irrigated arable land 75

Scis Range-Brush Good 48 223 Olive groves 64

P Herbaceous vegetation Fair 69 231 Pastures 61

L Close-seeded Good 72 242 Complex cultivation patterns 64

B Gravel roads – 85 243 Land principally occupied by agriculture, with

significant areas of natural vegetation

77

Rd Paved roads – 98 244 Agro-forestry areas 69

Rk Impervious 98 311 Broad-leaved forest 52

U Impervious 98 313 Mixed forest 52

Sh It is asummed that the shadow

comprises the pasture around trees

– 69 321 Natural grasslands 69

W – – 100 323 Sclerophyllous vegetation 68

324 Transitional woodland-shrub 60

333 Sparsely vegetated areas 78

1Source: Table 9.1 and 9.5 in (NRCS 2004)
2Source: Table 2.3 in Ministerio de Fomento (2016) using the equation CN = 5080/(Po ? 50.8)

Fig. 5 Example of the grid cell weighted average CN values
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images was obtained for each tile, after which the infor-

mation was merged to calculate a global error matrix of the

validation group. In this case, the accuracy was based on

polygons as sampling units (Congalton and Green 2008).

2.9 Influence of the spatial resolution of land
cover maps on runoff

The hydrologic response was evaluated following the

National Resources Conservation Service Curve Number

method2 (NRCS-CN) (NRCS 2009), where the runoff

volume is calculated following Eq. (12).

Q ¼ P � 0:2Sð Þ2

P þ 0:8S
ð12Þ

where Q is the surface runoff, P is the total rainfall and S is

the potential maximum retention.

The S factor, which is measured in mm, is computed

from the main factor of the method, the dimensionless

curve number (CN) parameter following Eq. (13)

S ¼ 25400

CN
� 254 ð13Þ

Subsequently, the CN refers to the potential runoff capa-

bility of a complex area, whereby the higher CN value

indicates a higher potential runoff capability. Therefore,

based on the criteria of the National Engineering Hand-

book, the CN depends on cover (land cover and treatment

class) and soil type.The main limitation of the NRCS-CN is

the soil initial antecedent moisture before the rainfall-

runoff process begins (Durán-Barroso et al. 2016) and in

this study an average condition was considered.

In this work, the influence of the spatial resolution of the

land cover maps on runoff was conducted by comparing

Fig. 6 Class-level feature characterization. The values of optical bands (NIR, red, green, and blue) and textures (GLCMm and GLCMv) are

displayed as normalized values from 0 to 1

2 It was not until 1994 that the Soil Conservation Service (SCS)

changed its name to the National Resources Conservation Service

(NRCS), so the methodology is also known as the SCS-CN method.
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the CN values derived from the UHRS land cover maps

with the CN values derived from the Corine Land Cover

(CLC). CLC is a land cover database frequently used in

Europe for hydrologic purpose (Petroselli and Grimaldi

2018; Psomiadis et al. 2020; Walega and Salata 2019) and,

the version published in 2018 was used.

In the case of the UHSR land cover, given that the land

cover was in fact grouped into categories depending on

their hydrologic response, it is possible to obtain the CN

values directly from the lookup tables of the National

Engineering Handbook (NRCS 2004) and, the class-level

categories were used with this aim (Table 6). However, the

CLC database, only provides general information of

covertures. That is why, hydrological interpretation was

needed and, the lookup table proposed in Spain by Min-

isterio de Fomento (2016) was used in terms of CN values.

Finally, the soil group was chosen following the results in

Ferrer i Juliá (2003) resulting in a soil group type B

throughout the study area (Fragoso et al. 2017).

In order to compare the differences in the estimation of

CN values, the weighted average CN values derived from

both data sources were computed using a grid with a cell

size of 100 9 100 m (Fig. 5), following Eq. (14)

CNgrid ¼
X

n

i¼1

CNi � Ai

A
ð14Þ

where, CNi is the CN value in the ith land cover portion

within the grid cell, Ai is the ith area of land cover portion,

n is the total number of differences land covers portions in

the grid cell and A is the total area of the grid cell. Con-

sequently, in each grid cell, there was a pair of averaged

CN values, corresponding to each land cover data sources:

the UHSR-CN and the CLC-CN.

Therefore, the analysis of the effect of land cover spatial

resolution on the CN value, was conducted using the mean

absolute difference (MAD) and the global root mean

square difference (RMSD). The MAD measures the dif-

ference between the values in each grid cell expressing the

comparisons of CLC-CN versus UHSR-CN. Therefore, it

can be summarized if the disagreement between each pair

means overestimation or underestimation of the CN value.

The RMSD measures the difference between both land

cover datasets in the estimation of the CN values. The

MAD was computed for each CLC-CN value following

Eq. (15), and the RMSD for the global dataset following

Eq. (16)

MADCN ¼ 1

N

X

N

i¼1

CNgrid:CLC � CNgrid:UHSR

� �

i

 !

ð15Þ

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

CNgrid:CLC � CNgrid:UHSR

� �2

i

 !

v

u

u

t ð16Þ

where, CNgrid.CLC is the weighted average CLC-CN value

in the ith grid cell, CNgrid.UHSR is the weighted average

Fig. 7 Macro-class-level features characterization at (MC). The values of optical bands (NIR, red, green, and blue) and textures (GLCMm and

GLCMv) are displayed as normalized values from 0 to 1
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UHSR-CN value in the ith grid cell and, N is the number of

grid cells with the same CNgrid.CLC.

3 Results

3.1 Feature characterization

The feature characterization was inspired by a spectral

signature of the categories. Due to the low spectral reso-

lution of PNOA images, our approach considered not only

the spectral information of the bands but also the infor-

mation of all the predictors. Therefore, the characterization

was based on a box-plot graph representing the values of

the predictors from the first quartile to the third quartile,

which is referred to as the interquartile range (IQR). The

analysis shows different responses among the categories at

the class (Fig. 6) and macro-class (Fig. 7) levels.

The overstory stratum that represents the holm oaks

presented high differences between the normalized optical

bands, and presented the highest values in NIR band. In

contrast, the red, green, and blue bands had much lower

values, with an IQR below 0.20 in all cases, particularly the

IQR of the blue band, with a value of 0.09. Regarding the

indices, it is worth noting that holm oaks exhibit higher

negative values in CI and NDWI2, but present higher

positive mean values in terms of NDVI, second modified

soil adjusted vegetation index (MSAVI2), and soil adjusted

vegetation index (SAVI). The holm oaks also have a high

response in terms of texture in both the GLCMm and

GLCMv predictors.

The understory stratum categories presented different

responses among categories at the macro-class level, which

discriminated between shrubs and herbaceous plants. The

shrub stratum also presented different responses within

categories at the class level. However, in this case,

herbaceous plant categories did not present significant

differences at the class level. Therefore, understory cate-

gories exhibited a similar magnitude in all the optical

bands, and no significant differences were observed com-

pared to the overstory observations. Moreover, the values

were lower for shrubs and higher for herbaceous plant

categories. It is worth noting that, in this case, the blue

band also presented a low IQR value of approximately 0.13

in both understory strata. Furthermore, when considering

shrub species, Sret presented the highest values in all

optical bands, whereas Scis had the lowest values. The IQR

of the blue band was also very narrow, ranging from 0.8 to

Fig. 8 Jeffries-Matusita distance (JMD) between the categories in both levels of disaggregation: class and macro-class

Table 7 Overall accuracies

(OA) and kappa indices

obtained from the error matrices

in both considered scenarios

Class level Macro-class level

Scenario Training Test OA (%) Kappa OA (%) Kappa

1 ROI Dataset 1 ROI Dataset 2 91.6 0.8922 95.8 0.9412

2 ROI Dataset 2 ROI Dataset 1 91.5 0.8915 95.7 0.9407
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Fig. 9 Predictor importance in the RF algorithm based on mean decrease accuracy at the class and macro-class level

Fig. 10 Class- and macro-class-level predictor importance across categories in the RF algorithm
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0.10. Regarding the indices, the CI in the understory stra-

tum was close to zero in all the categories, showing similar

responses among and within species. When evaluating the

VI, shrubs exhibited low values, showing different

responses within species: the lowest values were observed

for Sret and the highest values for Smix. The herbaceous

stratum had negative VI values with a narrow IQR of 0.06,

showing similar responses within species. The understory

stratum presented different responses in terms of texture

features. Particularly, while herbaceous plants had higher

GLCMm and GLCMv predictor values (similar to the

overstory stratum), the shrub stratum presented lower val-

ues and different responses within species, with Sret

exhibiting the highest values. The lowest values were

observed for Scis, which also had a narrow IQR.

Finally, the non-vegetation categories exhibited differ-

ent responses at the macro-class level, distinguishing

between impervious surface categories at class-level. First,

related to the optical response, B presented the highest

values of all bands, indicating that the IQR value of the

green band in this category was very narrow, with a value

of only 0.08. Additionally, impervious surfaces exhibited

lower values in the NIR band; however, Sh and W

Table 8 Overall accuracies (OA) and kappa indices obtained

Class level Macro-class level

Group OA (%) Kappa OA (%) Kappa

Training 91.6 0.89 95.8 0.94

Validation 78.3 0.74 86.3 0.82

Fig. 11 Summary of the random forest classifier error matrix results

Fig. 12 Error matrix statistics of the training group random forest classifier

Fig. 13 Error matrix statistics of the random forest classifier in the validation group
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presented by far the lowest values in all optical bands.

Regarding the indices, impervious surfaces exhibited a CI

value close to zero, with a narrow IQR but with similar

responses within species. For this index, Sh and W

exhibited high IQR values of over 0.70. Regarding the BI,

the highest values were observed for B and U, which also

had narrow IQR values of 0.017 and 0.09, respectively. Sh

exhibited by far the lowest BI value, with a narrow IQR of

0.013. Concerning the NDWI2, not only did the highest

values were observed for impervious surfaces and W, but

the IQR values for Sh and W were also wider, with values

higher than 1. Finally, in terms of texture, impervious

categories presented low values except for U, which had

higher values in terms of both mean and IQR ([ 0.5). The

Sh and W classifications exhibited by far the lowest mean

TF values, as well as a narrow IQR value of less than 0.04.

The JMD showed a good spectral separation between

the categories at both levels of disaggregation (Fig. 8). In

the class-level analysis, the values ranged from 1.10 to

1.41. The lowest values occurred within the classes of the

herbaceous macro-class. Specifically, P and L resulted in a

JMD of 1.10. When considering the macro-class level, the

highest JMD values remained at 1.41. However, the lowest

values improved for the H and B pair, as well as the S and

Qc pair, which achieved a JMD of 1.38.

3.2 Selection of the random forest classifier

As previously mentioned, the RF classifier was trained in

two scenarios (Fig. 4) using the training dataset twice (i.e.,

each time either as a training or test set). The OAs achieved

for each run are summarized in Table 7, and demonstrate

the robustness of our developed classifier, with an OA and

kappa index of over 91% in both instances. The results in

scenario 1 were slightly better, and thus the RF classifier

obtained in scenario 1 was selected for image classification.

Regarding the importance of the predictors, Fig. 9

shows the mean decrease in the predictive accuracy of the

RF algorithm in Scenario 1. The RF algorithm uses the out

of bag (OOB) samples that were not used to build the trees

to measure the prediction capacity of each predictor. As

explained in Hastie et al. (2009), when a tree is grown,

OOB samples are used to measure the accuracy of the

prediction. Then, each predictor is permuted in the OOB

samples and the accuracy is calculated again. Afterward,

the decrease in accuracy is averaged over all trees for each

predictor. Higher values suggest a more important role of

the predictor in the classification process.

CI, the blue band, GLCMm, and GLCMv were found to

be the most important classification predictors, followed by

other less important but also strong predictors, such as the

green band, BI, and the NIR band. VI had the least

importance, according to our analysis.

Additionally, the importance of each predictor varied

across the categories, as illustrated in Fig. 10. The blue

band became notably important to classify shrub species.

Moreover, the most important predictors for herbaceous

category classification were CI and GLCMm. Finally, CI

was the most valuable predictor for impervious surfaces.

3.3 Accuracy assessment

As indicated by Table 8, the RF algorithm delivered

accurate results. The OA values were higher for the macro-

class level than for the class level analysis, and the results

in the validation group were lower than those of the

Fig. 14 Salt-and-pepper noise reduction post-classification processing results
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training group. However, despite these differences, the

overall performance of our classifier was still outstanding.

The error matrices obtained herein are supplied as

supplementary material for both groups. The matrices are

Fig. 15 Land cover maps of the dehesa environment
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expressed in terms of pixel count and percent of prediction

for each category.3
Overall, the training group rendered more accurate

results than the validation group, based on the error matrix

data (Fig. 11).

When considering vegetation cover, the training group

Qc classification (Fig. 12) achieved excellent results, with

a sensitivity, specificity, and balanced accuracy of 0.98.

Moreover, at the macro-class level, excellent results were

Fig. 16 Grid cell weighted average CN values derived from the UHSR land cover maps (UHSR-CN) and the CLC (CLC-CN) in a the dehesa
environment

3 Online Resource 2: see Tables S1 and S2 for more details on the

training group at the class level. For the macro-class-level analysis,

see Tables S3 and S4. For the validation group at class level, see

Tables S5 and S6. For the analysis at the macro-class level, see

Tables S7 and S8.
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achieved for the shrub stratum, showing a sensitivity of

0.80, a specificity of 0.97, and a balanced accuracy of 0.88.

When considering the class-level disaggregation, the best

results were observed for Sret, followed by Scis and Smix.

Regarding the herbaceous stratum, the results were excel-

lent at the macro-class level. However, at the class level,

the statistics for the L class were poorer than those for P

class. Specifically, L exhibited balanced accuracy and

sensitivity values of 0.84 and 0.69, respectively, whereas P

reached a 0.95 value for both parameters. Considering the

non-vegetation covers, the results were excellent for B and

I. Good results were also obtained when considering the

class level disaggregation in Rk, Rd, and U. However, the

values obtained for W were less accurate, with a sensitivity

of 0.68 and a balance accuracy of 0.84.

In terms of balanced accuracy, the results in the vali-

dation group (Fig. 13) showed values ranging from 0.56 to

0.97 at the class level and from 0.59 to 0.97 at the macro-

class level. As previously mentioned, the accuracy values

were lower than those for the training group, especially at

the class level, where significant decreases in sensitivity

and precision were observed. However, vegetation classi-

fications remained accurate for Qc, H, and S. In contrast, a

decrease in accuracy was observed for non-vegetation

classes such as Sh, with W having the worst classification

performance.

3.4 Land cover results

Figure 14 illustrates how the images were smoothed using

the majority filtering and sieving methods to reduce salt-

Fig. 17 Influence of the spatial resolution of the land cover maps in the CN comparing the grid cell weighted average CLC-CN value versus

UHSR-CN values a mean absolute difference (MAD), b box-plot of CLC-CN values versus UHSR-CN values
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and-pepper noise. Figure 15 illustrates the representative

land cover types of the dehesa environment upon the

application of post-classification processing. The final land

cover maps for all the images of the training group are

shown in Online Resource 2 from Fig S2 to Fig S5, and the

land cover maps for the images of the validation group are

shown in Fig S6 and Fig S7.

3.5 Influence of spatial resolution of land cover
maps on runoff results

Figure 16 illustrates an example of the spatial distribution

of the grid cell weighted average CN values derived from

the both data sources, the UHSR imagery developed in this

study, and the CLC database. The results are different

according to the first visual interpretation and they show

several responses between the categories of land cover.

Thus, the spatial distribution of the CN values depends on

the spatial resolution of the land cover data source. The CN

maps for the all the images used in this study are shown in

Fig S8 to Fig S13.

Given that the differences have physical sense, the MAD

summarize if the disagreement between each pair means

overestimation or underestimation of the CN value. As

shown in Fig. 17a, the CLC-CN values below, a threshold

value of 66 are smaller than the UHRS-CN values, which

means underestimation of the runoff of the CLC for the

broad-leaved forest, mixed forest, transitional woodland-

shrub, pastures, olive groves and complex cultivation pat-

terns. On the other hand, the CLC-CN values over a

threshold value of 66 are higher than the UHRS-CN values,

which means overestimation of the runoff for the cate-

gories of sclerophyllous vegetation, agro-forestry areas,

natural grasslands, non-irrigated arable land, land princi-

pally occupied by agriculture, with significant areas of

natural vegetation, sparsely vegetated areas, mineral

extraction sites and continuous urban fabric. The differ-

ences in the estimation of the CN values between the

UHSR and CLC (Fig. 17b) reached a RMSD of 6.26.

Lastly, it is worth noting that the underestimation in runoff

corresponds to the most representative land cover in the

dehesa environment.

4 Discussion

In this work, the vegetation in a dehesa environment was

studied using PNOA UHSR imagery considering both the

overstory and understory strata. Here, we proposed the use

of several UHSR images without the need for mosaic

processing, using the information of the bands without

further calibration. Therefore, the vegetation was analyzed

considering the data available, which resulted in 4 optical

bands (NIR, red, green, and blue) and the metrics derived

from them, such as VI, SI, and TF.

Our results were presented in two different groups: the

training and the validation group. The training group

results could be compared to previous works, given that

they derived from the application of a traditional process.

In this sense, a supervised classification was carried out

using the data collected from all the images of the training

group. We verified that the ground data could be extracted

from each independent tile and merged all data to build a

global dataset that could be used for the characterization of

land cover categories. Then, we tested our novel approach,

which consisted of applying the information of the global

dataset of the training group to the validation group, for

which ground data extraction was not necessarily per-

formed. The OA and kappa index results (Table 8) were

excellent for the training group and very good for the

validation group, reaching similar accuracy levels than

those obtained in previous studies (Table 2).

Regarding the overstory classification, given that this

stratum is mainly comprised of holm oaks, any necessary

species discrimination was applied in this work. Therefore,

the error matrix statistics for this category were excellent

for the training group (Fig. 12) and very good for the

validation group (Fig. 13). Importantly, our results were

consistent with those reported by Boggs (2010), in which

tree canopies were mapped using QuickBird imagery pan-

sharpened to a spatial resolution of 0.5 m. In this work, the

author used the same spectral bands used herein, but also

considered NDVI data, thereby joining two approaches into

an NDVI pixel- and object-based image analysis (OBIA).

The OA values ranged from 85% to 95% for the NDVI

pixel-based approach, and from 87% to 97% for the OBIA.

Therefore, our training group results were slightly better

than those obtained even with the OBIA approach. Con-

sidering other works that used VHSR, our results were

comparable to those of Dalponte et al. (2014), which

employed a spatial resolution of 0.40 m in their tree crown

delineation and tree species classification in boreal forests

using hyperspectral images. The best species classification

producer’s accuracy reached 97.5% for pine trees. Here,

the sensitivity for holm oaks reached 98% in both training

and validation groups. Moreover, it is important to point

out that this was achieved using only 12 predictors in the

classification versus the 160 spectral bands of their work,

even though no species discrimination was applied in our

study.

Regarding the understory classification, particularly the

shrub species discrimination, our results were slightly

better than those obtained in previous works that focused

on understory strata, even though our work used UHSR

instead of the more traditionally used VHSR (e.g.,Eroğlu

et al. (2010), Malahlela et al. (2015), Niphadkar et al.
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(2017) and van Lier et al. (2009)). Eroğlu et al. (2010) and

van Lier et al. (2009) reported an overall accuracy of

82.5% and 79.8% using IKONOS imagery. Similar to our

macro-class-level analysis, van Lier et al. (2009) achieved

a producer’s accuracy of 87.8% for understory strata

classification, pointing out that their method was weaker

for areas with sparse cover of ericaceous shrubs or dense

tree cover. Likewise, our results were better than those of

Eroğlu et al. (2010) which reported a producer’s accuracy

of 65.9% and 93.75% for overstory and understory

respectively, although they grouped shrub and herbaceous

plants as a unique category. Moreover, Malahlela et al.

(2015) used WordView2 imagery to study the probability

of occurrence of a specific invasive shrub (C. odorata) in

forest gaps, and achieved sensitivity, specificity, and pre-

cision values of 87%, 86%, and 87%, respectively. Finally,

our results were much better than those of Niphadkar et al.

(2017), who used Geo-eye and WordView2 imagery to

map another invasive shrub (Lantana camara) in a tropical

forest, with only an overall accuracy of approximately

60%.

Regarding our analysis of water bodies, it is worth

noting that the results for water are by far the weakest of all

categories for both the training and validation groups,

where sensitivity decreased from 0.68 to 0.12. In the

training group, the main confusion was between water and

shadows, with a 27% confusion rate (Table S2). In the case

of the validation group, low accuracies were attributed to

the misclassification of 40% of the pixels. Further, confu-

sion with shadows reached 21% and 10% with urban areas

(Table S4). The water bodies in our study area were small

cattle ponds and were likely misclassified in the validating

group due to the considerable variability between the cattle

ponds during the image acquisition period (June). This can

be attributed to low depths, as well as suspended algae and

sludge, all of which affects the surface’s spectral response.

Thus, even though the waterbody classification accuracy

was poor in our specific case study, said surfaces only

represented 0.5% of the studied area.

Regarding the importance of the predictors, our results

demonstrated that CI, the blue band, GLCMm, and

GLCMv were the most important classification parameters.

The CI was the most important predictor, given that it was

ranked first at the macro-class-level analysis and second at

the class level. In turn, this ranking was not far from the

blue band, which ranked first in the class level (Fig. 10). In

our study, the CI was helpful to distinguish among vege-

tation categories, even more than the VI, especially for H

and S. Moreover, regarding the non-vegetation categories,

the CI was by far the most important for I. These results

might be related to the fact that CI IQR values in these

categories were very narrow. Therefore, a low dispersion

was observed in the sample set. Consequently, the inclu-

sion of CI as a predictor improved the discrimination of

non-vegetated areas, as reported by Richardson and Wie-

gand (1977) and Huete and Post (1984). It is well known

that the inclusion of VI facilitates the discrimination of

vegetation and thus it is commonly used as a predictor (see

Table 2). However, in our results, the VI seemed to have

less importance. This may be explained by the seasonal

phenology pattern typically observed during early summer

in Extremadura (i.e., our study region), whereby the

herbaceous stratum loses its greenness and evergreen

shrubs become less vigorous, and thus the CI and BI

become more effective for discrimination. Additionally, as

shown in Fig. 18, a negative correlation was observed

between the VI and CI, making them less representative.

The importance of the blue band and the texture features

(GLCMm and GLCMv) are in concordance with the results

of Burnett et al. (2019). In their study, coconut trees and

native forests were mapped using WorldView2 images

with a pan-sharpened spatial resolution of 0.5 m. The most

important features were the coastal and blue band, ranking

first and second in the average importance score, respec-

tively. Moreover, different GLCM metrics were also

ranked third to eighth. However, SI was not used in said

work, and thus cannot be fully compared with ours. Burnett

et al. (2019) concluded that the coastal and blue spectral

bands facilitated the discrimination between broad vege-

tation classes in humid tropics. Although the environment

in our study was Mediterranean and non-tropical, our

results suggest that the blue band also facilitated discrim-

ination, particularly in the shrub stratum (Fig. 10). Fur-

thermore, based on the method described by Burnett et al.

Fig. 18 Pearson correlation coefficient of the predictors
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(2019), we ran a RF model in the training group without

the blue band as a predictor, after which the accuracy

decreased at both analysis levels. Specifically, the class-

level OA decreased from 91.6% (kappa = 0.89) to 87.8%

(kappa = 0.84), and the macro-class-level OA decreased

from 95.8% (kappa = 0.94) to 93.5% (kappa = 0.91).

Therefore, a general decrease in accuracy metrics was

observed in all the categories (Fig. 19).

The most significant decrease was observed in the sen-

sitivity of low strata vegetation (e.g., shrub species) and

non-vegetated areas, such as urban areas and water bodies.

This was likely because the blue band had a strong positive

influence on the classification. Notably, the feature char-

acterization demonstrated that the blue band had different

responses within shrub species, and the IQR of the blue

band was also very narrow in said categories.

Therefore, it is worth noting that our results confirmed

the findings of Burnett et al. (2019) by establishing that the

blue band facilitated species discrimination (particularly

within shrub species) in a Mediterranean dehesa ecosys-

tem. Considering the image acquisition dates, our results

are also in agreement with those of Fang et al. (2018),

which demonstrated that the blue wavelengths were among

the most important variables during spring and summer.

Regarding spectral separability, the JMD was applied in

this work. As previously mentioned, the JMD measures the

separability between categories and depends on the infor-

mation that each predictor can provide to the analysis. In

our work, the JMD among categories ranged from 1.1 to

1.41 at the class level and from 1.38 to 1.41 at the macro-

class level. Reaching a value of 1.41 for most pairs meant

that the training data spanned the entire spectral variability

between the categories. A low JMD value of 1.1 was

observed for the P-L pair, which represented the species in

the herbaceous macro-class. In this instance, the feature

characterization established no significant differences

between herbaceous categories at the class level. On the

one hand, the class-level results exhibited a weighted-av-

erage confusion error between pairs (considering the 12

categories of the class-level disaggregation analysis) of

0.76%, as well as a related weighted-average JMD value of

1.397. On the other hand, the results at the macro-class

level showed a weighted-average error of confusion

between pairs (considering the 7 categories) of 0.70% as

Fig. 19 Evaluation of the classification accuracy measure decreases for each category after eliminating the blue band as a predictor

Fig. 20 Weighted-average

Jeffries-Matusita distance

(JMD) values at both level of

analysis, weighted-average error

between pairs, and final overall

accuracy
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well as its related weighted-average JMD value of 1.408

(Fig. 20). In this regard, based on a multiclass JMD anal-

ysis, our results demonstrated that higher weighted-average

JMD values (considering all categories) translated to lower

weighted-average errors between categories. The weigh-

ted-average error between pairs was in concordance with

the relationship between JMD and the classification error

that was mentioned in Lasaponara and Lanorte (2007b) and

Lee and Choi (2000), which suggested a classification error

probability of approximately 5% or less for a JMD value

above 1.24. Additionally, the best OA achieved was related

to the higher weighted-average JMD value for the analysis

of 7 categories at the macro-class level, which represents

an overall misclassification rate of 4.22%. In contrast, the

analysis of 12 categories at the class level rendered an

overall misclassification rate of 8.4%.

Regarding the tailored maps, we were able to design

maps with very high accuracy for the main representative

land cover types of the dehesa environment. The excellent

results obtained for the overstory stratum, which was

mainly comprised of holm oaks (Quercus rotundifolia) and

had a 0.25-m UHSR resolution, allowed us to delineate the

tree crown shape with high precision. Thus, the results

could be very useful to calculate derived dendometric

parameters of individual trees, such as crown area and

crown diameter, as well as other dasometric variables

related to the tree canopy cover factor and stand density. It

is worth noting than shrub species were also classified with

high accuracy, allowing us to study shrub cover spatial

patterns, which play a crucial role in the hydrologic

response of a given territory, as well as pasture productivity

and tree growth (Pulido et al. 2010; Rivest et al. 2011), the

occurrence of aromatic and medicinal plants and honey

(Canteiro et al. 2011) and finally, but not the least impor-

tant, the management of the dehesa ecosystem (Caballero

Dı́az et al. 2015; Godinho et al. 2016b).

Regarding the influence of the ad hoc land cover maps

on the hydrologic process of the territory, the potential

response of the UHSR land cover was compared with the

potential response derived from a global database such as

CLC. Our results, rendered a more precise estimation of the

spatial distribution of the CN values, highlighting the

influence of the spatial resolution, given that the global

data base of CLC underestimate the potential runoff in the

most representative land cover in the dehesa environment,

such as those of broad-leaved forest, mixed forest, transi-

tional woodland-shrub and pastures. This result, was con-

sistent with those reported by Walega and Salata (2019)

where the evaluation of the direct runoff using the NRCS-

CN method was underestimated compared to the observed

events. In this work, the authors pointed out that the dif-

ferences strongly depend on catchment size due to the risk

of over-generalization of the CLC land cover categories. In

this regard, further investigation is needed, specially in

Mediterranean forested watershed where a regional cali-

bration of the CN is not yet available. Nevertheless, other

works in forested areas in United States suggested uncer-

tainties in the application of the CN lookup tables in

forested watershed (Tedela et al. 2012; Walega et al. 2020).

For the classification of accurate UHSR land cover

maps, the definition of reference data from fieldwork is a

time-intensive, expensive, and subjective task (Ghimire

et al. 2012). Image photointerpretation techniques could be

used to minimize or avoid field campaigns; however,

manual processing is also laborious, time-consuming, and

impractical for extensive areas (Müllerová et al. 2013). In

our work, we have proven the effectiveness of applying a

classifier to neighboring images with similar environments

that might not participate in the extraction of the training

dataset, thereby reducing manual labor. Our approach uses

UHSR image spectral information without further calibra-

tion, and thus reduces the need for labor-intensive field

campaigns, which is especially useful in inaccessible

regions. The main limitation of our proposed procedure is

that images must have the same flight conditions to ensure

the similarity of the spectral information.

Finally, once the UHSR images are classified for both

the training and validation groups, the land cover infor-

mation can be used for the definition of new training

datasets for the supervised classification of HSR images,

such as Sentinel or Landsat. In this regard, this approach

was proposed by Paris et al. (2017) to avoid fieldwork by

using the available information from another covering

image of the same time series. Their methodology con-

sisted of the definition of a ‘‘pseudo’’ training set from a

thematic map analyzing the samples that had the highest

probability of belonging to areas where no changes

occurred on the ground. Finally, after a validation, these

pseudo training samples could be used as training samples

for supervised classification.

5 Conclusions

In this study, the vegetation of a dehesa environment was

studied using PNOA UHSR imagery and a supervised

classification algorithm based on the random forest

approach. Both the overstory and understory strata were

considered to obtain tailored maps of the land cover with

high accuracy. During the classification process, the prin-

cipal predictors were identified, demonstrating how the

blue band, soil indices, and texture features were the most

important classification parameters. The overstory stratum

accuracy results were excellent and shrub species were also

classified with high accuracy. This allows us to study shrub

cover spatial patterns, which play a crucial role in pasture
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productivity and tree growth, the land management of the

dehesa ecosystem, and the hydrologic response of the ter-

ritory. Given that the land cover categories were also

defined according to the runoff generation capability, the

maps could be used as an input for future watershed

hydrologic and water balance models. In addition, these

maps characterize the environment in a precisely spatial

distributed CN values, representing the potential runoff

capability of the territory. In this sense, we found that

having accurate tailored land cover maps is crucial, given

that using a global land cover database, such as CLC, led to

underestimating the potential runoff in the most represen-

tative land cover in the dehesa environment, such as those

of broad-leaved forest, mixed forest, transitional woodland-

shrub and pastures.

Moreover, we developed a method to reduce field

campaigns by evaluating the performance of the classifier

to map neighboring images that were not initially used to

train the model, achieving good results. Given that our

approach uses the spectral information of UHSR images

without further calibration, it could be used to minimize the

manual labor associated with photointerpretation and field

campaigns. Future research will focus on the automatic

generation of new samples extracted from classified UHSR

images, which could be used as training datasets for the

future supervised classification of other HSR images, such

as Sentinel imagery. Furthermore, future investigation is

also needed to assess the regional calibration of the CN

values of HSR land cover images in Mediterranean fores-

ted watershed.
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individuales con el módulo de procesado de QGIS a partir de

información LiDAR y ortofotografı́a aérea. Paper presented at
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Hawryło P, Wę _zyk P (2018) Predicting growing stock volume of

scots pine stands using Sentinel-2 satellite imagery and airborne

image-derived point clouds. Forests 9:274. https://doi.org/10.

3390/f9050274
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Pastos (S.E.E.P.), pp 3–13
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